Developer

Freeware Component Review:
The Internet Component Suite

William Rouck

There are lots of great components and application source
code listings available on the Web. In this review, you'll find
out about a very exciting, completely free set of components
that makes Internet access a breeze!

Internet components written by Frangois Piette. The
author includes full source code for all versions of

Delphi and C++ Builder. There are 11 components in the
package, and they cover all major Internet protocols,
including mail, news, FTP, HTTP, and telnet. Even if
you're not programming Internet-only applications,
many components in this suite can assist you in
troubleshooting your Delphi applications that use IP
for remote connections. These include Windows Internet
Naming Service (WINS) resolution and specifying
TCP/IP named resources for database aliasing.
Investigating this free component set can prove
worthwhile for any Delphi client application, especially
if you're looking for Internet functionality without the
high cost of many comparable commercial packages.

Installation of the suite is straightforward. I
conducted this review using Delphi 3, which required me
to create a new package and add the ICS component files
to it. For Delphi 1 and 2 (and C++ Builder), simply add
each component using the “Add Component” command
until the set is fully installed. The component set is
written entirely in native Delphi Object Pascal and
requires no OCX support for your client applications.

The building-block component of the set is the
TWSocket component. It encapsulates support for most
Windows WINSOCK.DLL API functions. It supports both
TCP and UDP protocols, and the author provides a link
to a primer document on his Web page describing the
differences between the two. The author includes a Help
file that provides an overview of the set and details a
few of the components, one of which is TWSocket. You
can set socket ports, listen for new remote connections,
and connect your application as a client to a remote
server by simply dropping this component on a form. To
demonstrate the power of TWSocket, the author includes
demonstration programs that create chat programs, DNS
lookups, and send messages via the telnet port. For a

THE Internet Component Suite (ICS) is a collection of

14 Delphi Developer june 1998

demonstration, compile and run both the Client demo
(CLIDEMO.DPR) and the Server demo (SRVDEMO.DPR)
simultaneously (both are a part of this month’s Subscriber
Downloads at www.pinpub.com/ delphi), and send
messages to each program. You'll quickly see the results
of the communicating programs and how to create your
own Internet messaging code.

Mail functions

Internet mail protocols are fully supported by ICS
through the TPop3Client and TSmtpClient components.
With the included SMTP and POP3 demonstration
programs, you can see exactly how to add such
functionality to your programs. To test the ICS mail
protocol support, compile and launch the demos, and set
the SMTP demo to send a message to your own e-mail
account. Then set the POP3 demo to connect to your
POP3 server, send your ID and password, and check your
account’s message status. A memo pane is provided to
show you the messaging between your client and your
Internet service provider.

FTP

FTP functions are included as well, using the TFtpClient
component. The included demonstration program

shows you how to connect to a remote FTP server, log in,
download directory lists, and other routine FTP functions.
You might find this function useful for automating the
transfer of report files and local database tables to and
from your application and the hosting NT server.

PING Support

The TPing component is an example of ICS functions

that can be of use to the average remote-database
application. For example, if you're writing programs that
must communicate with remote database servers over a
wide-area network, the TPing component might be useful
for remote diagnostics. You could write a simple PING
utility for a remote user with your database server IP
addresses hard-coded into it. If your application isn’t
communicating with the host server, you could have your
user select such a function from your application and
then give you the results over the phone. Or, you could

http://www.pinpub.com



have your client program test for a successful PING
before launching the rest of your code, and alert the
user that communications are temporarily inactive. I
created a communications test program using the TPing
component. It can be found in the sample Delphi 3 code
project accompanying this article, “"NETDIAGS.DPR”.
Note that to compile this program, you must have
Internet Component Suite installed. The simple user
interface is shown in Figure 1.

I included buttons for the IBM Web server and the
ABC News Web server to demonstrate how easy you can
make this for your users. Coding the PING was easy and
required just a few lines of code. Listing 1, extracted from
NETDIAGS, shows you how to launch a PING function
with a hard-coded IP address with only three lines of code
and a TPing component dropped on your form.

Listing 1. Using TPing.

procedure ThemoPingForm.PingABCServerBitBtnClick(
Sender: TObject);
begin
ServerToPing : 'ABCNEWS' ;
IPToPing '204.202.137.114";
PerformPing (ServerToPing, IPToPing);

end;

The manual IP entry button shown in Figure 1 is
easy to implement—simply place the user input for the
IP address into the “IPToPing” property of TPing. As
is also shown in NETDIAGS, you can place a named
address in the “Manual Ping” text field, and the TPing
component will conduct a DNS lookup for you.

For practice, I recommend that you try writing a user-
friendly replacement for the Microsoft command-line
PING.EXE utility.

Other ICS protocol support components
The other included components, TFingerCli (Finger

protocol),
THttpCli

(HTTP Protocol),
TNntpCl
(newsgroup
client), TTnCnx
(telnet protocol
client), TEmulVT
(ANSI terminal
emulation), and ND -
TTnEmulVT
(telnet and
ANSI terminal

PINGig IBM (204. 1.1 8.33). »

DNS Resolved |P Address is 204.146.18.33
Sending data {56 bytes), waiting for reply...
Racsivad 56 bytes back in 209 mseconds.

: 3 Sending data {56 bytes), waiting for reply...
=Received 56 bytes back in 187 mseconds.

Sending data {56 bytes), waiting for reply..
Received 56 bytes back in 342 mseconds.

emulation
combined)
complete the set of WINSOCK.DLL API support.

The author provides full, free support for the
components. He includes instructions on his Web page
for how to join his automated mailing list, where users of
his components submit questions and comments. There
are links to archives of past mailing list questions and
answers. The components are frequently updated.

For full Internet protocol support, this component
suite deserves a look before spending money on other
options. Frangois Piette has compiled a powerful set of
components and provides the full source code to show
you how he did it.

The Internet Component Suite can be downloaded
from Frangois Piette’s OverByte home page at http:/ /
www.rtfm.be/ fpiette / indexuk.htm. A

Figure 1.The TPing NETDIAGS demo.

i ROUCK.ZIP at www.pinpub.com/delphi

William Rouck is a consultant working with California Institute of
Technology’s Jet Propulsion Laboratory. His systems experience includes
inventory management and client/server management information
systems. wrouck@pop.jpl.nasa.gov.



